
A Virtual Machine Approach for High-level FPGA Programming
Loïc Sylvestre1 Jocelyn Sérot2 Emmanuel Chailloux1

1LIP6, CNRS, Sorbonne Université 2Université Clermont Auvergne, CNRS, SIGMA, Institut Pascal

Ê High-level FPGA programming

•Objectives:
• enhance the programmability of FPGAs
• allow quick prototyping
• simulation and acceleration of applications
•A virtual machine approach:
•O2B (OCaml on board)
https://github.com/jserot/O2B
•Macle (ML accelerator)
https://github.com/lsylvestre/macle

•OCaml: A high-level programming language
(functional, imperative, modular, object-oriented)

let main() =
print_int (f 80);
let x = 1000 and y = 12000000 in
let t_c = chrono gcd_c x y in
let t_rtl = chrono gcd x y in
let t_par =

let src = Array.create (128*10) x in
let dst = Array.create (128*10) x in
chrono (map_gcd_by_100 y) src dst

in
print_int (t_c / t_rtl);
print_int (t_c / t_par);
try print_int (nth 42 [1;2;3;4]) with
| Failure s -> print_string s ;;

main() ;;

Ï Preliminary evaluation

• on a small FPGA: 50K logic cells and 1,6 Kbits of
on-chip memory with a clock frequency of 50 MHz
•t_c / t_rtl: hardware acceleration of the
function gcd versus a C version running on the
softcore provides a × 30 speedup. Speedups
depend on the nature of the computations.
They can be higher than 30.
•t_rtl / t_par: hardware acceleration of

map_gcd_by_100 (using a parallel skeletons)
provides an extra speedup of almost 100.
•t_c / t_par: resulting speedup of almost 3000.

Ì Macle : a compiler for a subset of OCaml targeting the register transfer level

circuit gcd m n =
let rec loop a b =

if a > b then loop (a-b) b else
if a < b then loop a (b-a)

else a
in loop m n ;;

Accelerated function gcd

circuit f x =
let a = gcd x 120 and b = gcd x 2 in
a + b

Macle exploits implicite parallelism of OCaml code.

Idle

Loopa > b
a← a− b

a < b
b← b− a

a = b
result← a

start
rdy← false

a← m
b← n

¬start
rdy← true

Intermediate representation of the function gcd

Ë O2B : a softcore-based implementation of the OCaml Virtual Machine

Î Parallelism skeletons

circuit map_gcd_by_100 y src dst =
let gcd_y x = gcd x y in
array_map 100 gcd_y src dst ;;

Accelerated function map_gcd_by_100 processes an
OCaml array src in parallel by packet of 100 ele-
ments (using 100 instances of function gcd). Results
are transfered in the array dst. The level of paral-
lelism (ie., the time-space trade-off) is determined
by the programmer. Data transfers are optimized to
reduce the overhead of accessing the memory bus.

Í Dynamic features

circuit nth n l =
let rec loop i l =

match y with
| [] -> raise (Failure "nth")
| x::t ->

if i = n then x else loop (i+1) t
in loop 0 l ;;

Accelerated function nth is able to manipulate lists
dynamically allocated in the OCaml heap and raise
an exception catchable by OCaml caller functions.

entity gcd is
port(signal clk, reset : in std_logic;

signal start : in std_logic;
signal rdy : out std_logic;
signal m, n : in signed(30 downto 0);
signal result : out signed(30 downto 0));

end entity;
architecture rtl of gcd is

type t_state is (Idle, Loop);
signal STATE : t_state;
signal a, b : signed(30 downto 0);
begin process(reset,clk) begin

if reset = ’1’ then
STATE <= Idle;

elsif rising_edge(clk) then
case STATE is

when Idle =>
if start then

rdy <= false;
a <= m;
b <= n;
STATE <= Loop;

else
rdy <= true;
STATE <= Idle;

end if;
when Loop =>

if a > b then
a <= a - b;
STATE <= Loop;

elsif a < b then
b <= b - a;
STATE <= Loop;

else
result <= a;
STATE <= Idle;

end if;
end case;

end if;
end process;
end architecture;

VHDL description produced from the function gcd

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle

