Equipe APR, LIP6 (UMR 7606), Université Pierre et Marie Curie

MEMORY CONSUMPTION

Objectives

Guarantee a safe upper bound of used memory.

Consider how garbage collection affects this
upper bound.

Get a more precise upper bound than the existing
methods.

Consider the minimum amount of allocated
memory to accomplish this.

Analysis of a Mini-ML

{Annotations

Source code Virtual machine
\ /

Compiler

Cost model

Analysis

{ Prediction W

To create a cost model, we use
Source code annotation.

Data representation (data from the virtual
machine).

Compiler code transformation.

We target a Mini-ML composed of booleans, integers,
data constructors and closures.

The whole process relies on two measures

An upper bound on the amount of heap-allocated
memory.

A lower bound on the minimum of recycled
memory.

The result of this analysis is the subtraction of these
measures.

Targetting a virtual machine

The analysis is performed directly on bytecode.

Explicit stack.

Garbage Collector root set represented by this
stack.

Tail calls are considered.

We introduce the analysis on program source code
(without considering compilation optimizations).

firstname.lastname@lip6.fr

Jérémie SALVUCCI & Emmanuel CHAILLOUX

ANALYSIS

FOR APPLICATIVE LANGUAGES

How do we proceed 7

We use Abstract Interpretation techniques (boolean domain, integer domain (interval)).
We apply the analysis to monotonic functions.
We evaluate on both bounds of the interval (depending on function growth).

Analysis run on an example

Analysis of the following piece of code

let 1 = if Cond then make-list 2 else make-list 5 (* rule E-if *) in
filter odd (filter even 1) (* rule E-call x)

We suppose several things
make-list n returns a list from 1 to n
min n represents the relevant information to build back the minimal allocated structure.

merge ([1;2], [1;2;3;4;5], o)

make-list 2 make-list 5

filter even $[1;2;3;4;é] (min 2) E-call

T

filter even [1;2] (min 2)

let arg,i, = [1;2] in

let argmax = [1;2;3;4;5] in

filter even [1;2;3;4;5] (min 2) let Viin, Omin = filter argpmin 0 in
let Vimax, Omax = apply filter argnax 0 in

let o’ = merge_heap (G in, Tmax) In

merge (Vimin, Vmax, 0)

filter odd [2:4] (min 1)

T

filter odd [2] (mih 1) filter Qdd 2;4] (min 1)

Rules

merge call (I, v, 0) :=
let clss = get (I,0) in

fold (fun acc, cls — | ¢ dom(3) o' =G[l — (fun x = €)[7]]

- S (E-fun)
let v, ' = fold (fun acc, arg — p,0 F fun x — e ~ |
let arg,,i, = min arg in
let arg,.x = max arg in o . oy)
~ ~ p,0 e~ 10 0,0 = e~ vs,0
let Viin, Omin = cls argmin 0 in o)
N . v,o0 = merge_call(l,vs,c")
let Vinax, Omax = apply cls argpax o in S — (E-call)
let ' = merge_heap (Gpin, Tmax) in p,0 =€ e~ v, 0
let v, @' = merge (Viin, Vimax, 0) in
-~/ A~ A~ ~/
merge (accv, V, O)) p,0 - €cd Tb; O
-~ ~/ AN -~ ~/ AN
= P, 0 - €cs 7 Vesy; Ocs P, 0 - €alt ~ Valt, O alt .
s v,) (E-if)

0,0 b if e,y then e. else ey ~~

. -~/
in merge (acc,, v, 0’)) merge(Ves, Vaie, merge_heap(Ges, 0ait))

€
clss

Concrete domains Abstract domains

z€ Num=7 Zz € Num = {J_n} U {[a, b] ‘ ac Z b € Z} Domain abbreviations
b € Bool = {False, True} b € Bool = {1, False, True, T} Loc, Loc : Addresses
| € Loc=N | € Loc=NU{T,} DC, DC : Data Constructors

———

ve € Vs = Num + Bool + Loc Cls, Cls - Closures

Vs, Vs : Immediate values

vs € Vs = Num + Bool + Loc
p : Name — Vs p : Name — Vs

dc € DC = K v, with vs € Vs dc € DC = P(DC)
cls € Cls = Code x v; with v¢ € Vs | cls € Cls = P(Cls)
v, € Vy = DC + Cls v, € Vy = DC + Cls 0,0 : Heap
o: Loc — Vy o:Lloc— Vy

—

Vi, Viy - Allocated values

o, p . Environment

UPMC

AAAM1 SORBONNE

(7]
[«b]
S
o
e
=
(=}
 —
Y
(72]
<D
S
(<b}
n
(7]
<
o
‘O
=j

Restrictions

Analysed programs should be terminating.
Monotonic functions.

No side-effects.

Only linear data structures are allowed.

Current issues

Notion of shapes for nonlinear data structures.

Adapt the same method to nonlinear data structures is difficult.
Termination of the analysis.

Liveness analysis required.

References are part of a future work.

Related Works

The embounded project - Pedro Vasconcelos’ work on sized types (target : Mini-ML)
Nil :: Vi < Va.List'a,i =0 >
Cons :: Vij < Va.(a, List'a) — List/a,j =i+ 1,i >=0 >
append :: (List'a, List’a) — List*a, k = i + |

[F b List'a
[s b append(xs, b) : List“a, k' =i+ T4k Cons(x,r): List‘a,k =1+ K
[, = let r = append(xs, k) in Cons(x, r) : List™a

[0 = fun x with Nil — k|Cons (x,xs) — let r = append(xs, b) in Cons(x,r) : List"a

RAML - Martin Hofmann's work on automatic amortized analysis (target : Mini-ML)

Hypothesis : append :: (List(A, by), List(A, by), c) — (List(A, bs), d)

Fl, ntEb: LiSt(A, 32), mq
[5, m F append xs |, : List(A, a;), my [5,n3 = Cons(x, r), ny : List(A, as), ms

['4,ny = let r = append xs h in Cons(x, r) : List(A, ag), my

[0, no F fun l, with Nil — L|Cons(x,xs) — let r = append xs |, in Cons(x,r) : List(A, a7), mg

The analysis consists in finding the coefficient of the potential function which is a linear
combination of the functions inputs.

References

= P. Hudak.

A Semantic Model of Reference Counting and its Abstraction.
In Abstract Interpretation of Declarative Languages, pages 45—62. Ellis Horwood, 1987.

s Steffen Jost.
Automated Amortised Analysis.
PhD thesis, Faculty of Mathematics, Computer Science and Statistics, LMU Munich, Germany,
September 2010.

s Pedro Vasconcelos.
Space Cost Analysis Using Sized Types.
PhD thesis, School of Computer Science, University of St Andrews, Scotland, 2008.

