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Real-world graphs have very different properties than those of random graphs (e.g.
Erdös-Renyi): the degree distribution follows a power law, the mean distance is very
small, etc.[2]

Motivations

A random Apollonian network structure (RANS) R is recursively defined as:

either an empty triangle,

or a triangle T split in three parts, by placing a vertex v
inside T and connect it to the three vertices of the triangle;
each sub-triangle being substituted by a RANS.

O(R) = {O1(R), O2(R), O3(R)}: the three vertices of the outermost triangle of RANS R.

d(v, w): length of shortest path joining v to w.

Definitions
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Given R a RANS of order n and v a random internal vertex of R, the distance
from v to O1(R) has a Rayleigh limit distribution:
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Theorem 1

Multivariate generating function:
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= #{R ∈ Rn | kj vert. dist. j from O1}.

Recurrence relation:
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Proposition

Generating function for the number of vertices at distance i from O1:

Di(z) = ∂
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Di express as a function of z and T (z):

Di+1(z) = H i(z)× (1 + 2z2T 4(z))

6zT (z)(1− 2zT 2(z))
, for i ≥ 2

where H(z) = 1− 11√
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3(1− z/ρ) + (1− z/ρ)3/2 +O((1− z/ρ)2), ρ = 4/27.

Lemma

The full singular expansion of Di(z) can be derived from its expression in terms of H
and D2. Thus the proportion of vertices at distance i from O1, that is 1

nTn
[zn]Di(z) can

be evaluated:

Pr(d(v,O1(R)) = i) =
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nTn
[zn]Di(z) =
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nTn
[zn]H i−2(z)D2(z).

The result follows from theorem IX.16 (Semi-large powers) of [1]: the singular exponent
1/2 for H(z) implies a Rayleigh distribution for k = x

√
n.

Sketch of proof

Rayleigh distribution
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Let R be a RANS of order n and v, w two random vertices of R, the distance from
v to w has mean value
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Theorem 2

Distances to one or two or three outermost vertices:

∆ 1 (R) =
∑
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d(x,O1(R)), ∆ 2 (R) =
∑
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d(x, {O1(R), O2(R)}), ∆ 3 (R) =
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d(x,O(R)).
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with αn,i,j,k = # RANS of order n |∆ 1 = i,∆ 2 = j,∆ 3 = k.

Recursive equation:
∆(z, d 1 , d 2 , d 3 ) = 1 + zd 1d 2d 3 ×∆(zd 1 , d 2 , d 3 , d 1 )

×∆(z, d 1 , d 2d 3 , 1)

×∆(z, d 1d 2 , d 3 , 1).

Proposition
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Families of pairs of vertices
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Recursively:
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Top level:
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