Uniform random generation of executions in
concurrent programs

Martin Pépin
under the supervision of Antoine Genitrini & Frédéric Peschanski

July 5, 2019

Sorbonne University - LIP6 — Paris

The project

The project

Long term research project:
0. Bodini, M. Dien, A. Genitrini, F. Peschanski,...

Operators of concurrency — combinatorial interpretation

1/19

The project

Long term research project:
0. Bodini, M. Dien, A. Genitrini, F. Peschanski,...

Operators of concurrency — combinatorial interpretation
- Quantitative study

— Combinatorial explosion
— Average number of executions?

1/19

The project

Long term research project:
0. Bodini, M. Dien, A. Genitrini, F. Peschanski,...

Operators of concurrency — combinatorial interpretation

- Quantitative study
— Combinatorial explosion
— Average number of executions?

- Algorithmic applications
— Counting executions
— Uniform random sampling of executions

1/19

Classical operators of concurrency (1)

fork,

x.P Pl Q
— Trees [AofA'12]

fork, ’compute H compute‘

’compute H compute‘

2/19

Classical operators of concurrency (1)

X.P Pl Q
— Trees [AofA'12]

fork;

fork,

’compute H compute‘

Synchronization

’ compute H compute ‘ |join3 & forks |

— DAGs

Counting is gP-complete
[Brightwell & Winkler'91]
(too difficult)

’compute H compute‘

joinq & forks

— Fork-Join graphs [Analco'17] | compute || compute]

joins

2/19

Classical operators of concurrency (2)

Beverage vending machine

€
|
+
. N
+ (choice operator) tea
1
—s In the tree model [FSTTCS13] coffee
- Toy example

+ Technical difficulties Tossing icoin

+

e N
head tail

3/19

In today’s talk

Beverage vending machine

€
AN
+
= . I sync
— General model: petri \ Coﬁee
nets
heat water

— Tractable subclass: SP.
— Uniform random
generator of executions sugar no sugar

place cup

/

serve 4/19

Petri nets

- Model for concurrent
systems

- Places O symbolise
states / resources

- Transitions [_] symbolise tea EQOFF

actions

75@

heat
water

e
one

- Connected by directed arcs

- Transitions consume and serve
produce tokens

o0

5/19

- Model for concurrent
systems

- Places O symbolise
states / resources

- Transitions [_] symbolise tea EK

actions

f{)

heat
water

\ne

- Connected by directed arcs

- Transitions consume and serve
produce tokens

o0

5/19

- Model for concurrent ¢
systems

- Places O symbolise /C)\
states / resources

tea coffe

-O

heat
water

0@®

- Transitions [_] symbolise
actions

i\g

- Connected by directed arcs

- Transitions consume and serve
produce tokens

o0

€; tea;

5/19

- Model for concurrent
systems

- Places O symbolise
states / resources

-O

7

heat

tea |2 | coffe
. water

- Transitions [_] symbolise
actions

o
SORS

- Connected by directed arcs

\

- Transitions consume and serve |;|
produce tokens O
€; tea; heat;

5/19

- Model for concurrent
systems

- Places O symbolise
states / resources

-O

7

heat

tea |2 | coffe
. water

- Transitions [_] symbolise
actions

o
SORS

- Connected by directed arcs

\

- Transitions consume and serve [4
produce tokens

=]

€; tea; heat; serve

5/19

Construction rules (1)

6/19

Construction rules (1)

(N1 || N2)

6/19

Construction rules (1)

(Nq || No) (N7 + Np)

6/19

Construction rules (1)

- oo Sequence
o (N7 N2)

(N7 || N2) (N7 + No) GCP b@
pef

13 1Y
0T Q9 e gl
FCLI U

@~ O

O

6/19

Construction rules (11)

Atomic action

(a)

O—a——=0

7/19

Construction rules (11)

Atomic action

(a)

O—a——=0

Barrier

(B)

Oo—a—=0

Synchronisation

([N : B])

Merge all the
transitions labelled
with Bin N

7/19

We know

- ; IS associative

- || is associative and commutative
- + is associative and commutative
- Counting the executions is #P-hard

8/19

We know

- ; IS associative

- || is associative and commutative
- + is associative and commutative
- Counting the executions is #P-hard

We wish to prove

- Petri nets constructed using a, B, ;, +, || and [-: B] are
one-safe?

- All cycles are deadlocks?

- We can construct any cycle-free petri net that is
one-safe???

8/19

Tractable subclass: SP.

Summary

N,M ==N| M
N+ M
N; M
a
B
[N : B]

9/19

Tractable subclass: SP.

Non-deterministic series

Summary parallel programs
(SP.)
N,M ==N| M
N+ M . - Simpler model
N M - Still expressive
. - Tractable:
- Specifiable

- Efficient Uniform
random generation of
executions is possible

9/19

Combinatorial interpretation

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | - | : C — N such
thatvn,#{c e C;|c|=n} < oo

Specification — Generating Function — Asymptotics

10/19

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | - | : C — N such
thatvn,#{c e C;|c|=n} < oo

Specification (—) Generating Function — Asymptotics

Spec . GF
A = >, an"
A+B — A2+ B(2)
AxB — A(2)B(2)

10/19

Analytic combinatorics

Definition: combinatorial class
A set C equipped with a size function | - | : C — N such
thatvn,#{c e C;|c|=n} < oo

Specification (—) Generating Function [—) Asymptotics

Spec . GF
A = Y, AQ)mT—C\1-1
A+B — A2)+B(2) .
AxB — A(2)B(2)

3
an ~Cn~2p™"
10/19

SP. specification

Informal
§=8 | § | & | a
S =(S\S8): (S\S); - (S\S,) (=2terms)

Si=S\S) I (S\S) Il -+ | (S\S) (=2terms)
Sy =(S\S4) + (S\S4) + -+ + (S\84) (=2terms)

1/19

SP. specification

Informal
§=8 | § | & | a
S =(S\S8): (S\S); - (S\S,) (=2terms)

Si=S\S) I (S\S) Il -+ | (S\S) (=2terms)
Sy =(S\S4) + (S\S4) + -+ + (S\84) (=2terms)

Formal

S:Z—i-S;—i-SH + S8+
S. = SEQ>2(S\ §)
SH = MSETzz(S \ SH)

St = MSET>2(S \ 84) 1/19

SP. specification

Informal
§=8 | § | & | a
S =(S\S8): (S\S); - (S\S,) (=2terms)

Si=S\S) I (S\S) Il -+ | (S\S) (=2terms)
Sy =(S\S4) + (S\S4) + -+ + (S\84) (=2terms)

Formal

S=Z+85+S+S8¢
S. = SEQ>2(S\ §)

S| = MSET>,(S\ §))
S+ = MSET>»(S\ S4)

symbolic method system of equations...

1/19

The symbolic method for executions

We can do the same for counting the possible executions

Specification — Exponential generating function

A = AQ)=Y,ank
A+B = A@@)+8B@)
AxB = A(2)B(2)
AFB' = [JA(z—u)B(u)du +A(0)B(2)

'Ordered product [Analco’17]

12/19

Expected results

(x) Number of programs
Should be of the form C-n=zp~"

13/19

Expected results

(x) Number of programs
Should be of the form C-n=zp~"

(x) Average number of global choices
Should be of the form A - B" for small B.
(Numerically, in the non commutative case: B ~ 1.11678)

13/19

Expected results

(x) Number of programs
Should be of the form C-n=zp~"

(x) Average number of global choices
Should be of the form A - B" for small B.
(Numerically, in the non commutative case: B ~ 1.11678)

(% %) Average number of executions
(very ugly equations)

13/19

Uniform sampling of executions

Sampling executions uniformly at random in a given SP.
program.

14/19

Sampling executions uniformly at random in a given SP.
program.

Idea 1: listing of all possible executions? No

14/19

Sampling executions uniformly at random in a given SP.
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
— [CSR"17] gives an algorithm for the choice-free case

14/19

Sampling executions uniformly at random in a given SP.
program.

Idea 1: listing of all possible executions? No

Idea 2: expand all the global choices and choose one? No
— [CSR"17] gives an algorithm for the choice-free case

Solution: use the symbolic method to select a global choice
(next slides)

14/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 1): specify the executions of the program

15/19

Algorithm (step 2): backward symbolic method

3Oyo +9OYf1O| +210y9(Yh+y/)11|

16/19

Algorithm (step 2): backward symbolic method

/aD\
79 10 A1

Q 30y0 57 + 90307 + 210¥g (¥ Y1)
A =
. |y 1

9 10 ZH

4
- Z 00—
309! +9O1O! * 011!

16/19

Algorithm (step 2): backward symbolic method

/aD\
79 10 A1

Q 30y0 57 + 90307 + 210¥g (¥ Y1)
A =
. |y 1

9 10 ZH

4
- Z 00—
309! +9O1O! * 011!

of executions =
540

16/19

Algorithm (step 2): backward symbolic method

a
9 10 1

V4 V4 V4
Q 300 5 +90Vf o7 +210g (Vh +¥i) Ty
b 9! 10! !
0 B [

[y 1
9 10 211
30— +90— + 420—
ol T 10! u 1

420

: 9
T m% Plexec size = 11] = =
o O

16/19

Algorithm (step 2): backward symbolic method

'I'I
Q f
7

17/19

Algorithm (step 2): backward symbolic method

17/19

Algorithm (step 2): backward symbolic method

1
t;:?k %g 21095V + ¥i)

17/19

Algorithm (step 2): backward symbolic method

Zﬂ
t;gk O\g 210y (yn "’_yi)ﬁ

17/19

Algorithm (step 2): backward symbolic method

11
t;gk O\gg 210yg(yn "’_yi)%

choice-free graph

/O There remains to sample an
E& //\/El execution in the resulting
— [CSR"17]

17/19

Analysis of the algorithm

Correction: symbolic method

Worst case complexity (n = size of the graph):

- Step 1: size of the polynomial: O(n?)

- Step 2: number of arithmetic operations on big
integers: O(n?)

- Choice-free algorithm [CSR'17]: O(n?)

18/19

Conclusion

- A class of petri nets that captures the features we want to
study

- A realistic and tractable subclass: SP.

- An efficient uniform random generator of executions

19/19

Conclusion

- A class of petri nets that captures the features we want to
study

- A realistic and tractable subclass: SP.

- An efficient uniform random generator of executions
In the future:

- Quantitative results
- Beyond SP.: unfold some choices? Modelling loops?
- Recognize that a petri net is in SP.

- Implement a statistical model checker based on our
random generation techniques

19/19

Thank you!

Questions?

Sampling in a choice-free graph

Input: A choice-free SP.

Output: A uniform execution of this program (list of actions)
function sampLE_CF(P)

if P=athen
return [a]

else if P =Py || P, then
return SHUFFLE(SAMPLE_CF(P;), SAMPLE_CF(P>))

else if P = Py; P, then
return CONCAT(SAMPLE_CF(P;), SAMPLE_CF(P,))

References i

[§ Olivier Bodini, Matthieu Dien, Antoine Genitrini, and
Fréderic Peschanski.
The Ordered and Colored Products in Analytic
Combinatorics: Application to the Quantitative Study of
Synchronizations in Concurrent Processes.
In 14th SIAM Meeting on Analytic Algorithmics and
Combinatorics (ANALCO), pages 16-30, 2017.

References ii

[@ Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski.
The Combinatorics of Non-determinism.
In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS
2013), volume 24 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 425-436, Guwahati, India, 2013.

5 Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski.
A Quantitative Study of Pure Parallel Processes.
Electronic Journal of Combinatorics, 23(1):P111, 39 pages,
(electronic), 2016.

References iii

[Graham Brightwell and Peter Winkler.
Counting linear extensions.
Order, 8(3):225-242, 1991.

[§ Philippe Flajolet and Robert Sedgewick.
Analytic Combinatorics.
Cambridge University Press, 2009.

	The project
	Petri nets
	Combinatorial interpretation
	Uniform sampling of executions
	Appendix

